
5 IT’S ALL ABOUT
MODELS

De Bra et. al outline that an AHS should perform its tasks without requiring any
sort of programming by the authors [De Bra+99]. Therefore, the first task towards
adaptive behaviour is for the system to learn the content of a domain. Section 5.1
investigates how to develop suitable methods for extracting information from the
domain sources in an hypertext context. Next, in section 5.2 we find that Heuristics
can ensure quality to the process of abstracting concepts, and we try to identify
relations among the concepts found. From this basis, section 5.3 raises issues on
how a knowledge representation of the domain can be constructed and how the
generation of adaptive documents for each user can be fulfilled.

5.1 Extracting information

It is important to separate the information gathering from the information
processing. According to the overall plan outlined in the previous chapter, a crucial
step towards a domain model concerns the identification and modelling of the
content of each document. After stating the hypothesis of our work, this section
discusses the nature of concepts. Also, generic document characteristics and proper
techniques for extracting candidate concepts are identified.

5.1.1 Hypothesis of this thesis

As mentioned in the introduction, some models might represent the domain
knowledge better than others, and as models play important roles in adaptive
systems, the performance of the system depends on the quality of the models.
Figure 5–1 illustrates the different roles played in the adaptive system explaining
the notion of high quality: The author has a mental model of some knowledge, and
expresses this knowledge as HTML documents. During analysis of the static
documents, the adaptive hypertext system tries to generate a domain model which
agrees with the author’s view of the domain. The domain model and the user
models make up the basis from which the system can generate documents adapted
to each user. Since the adaptation depends highly on the content and structure of
the domain model, we therefore choose to focus on ensuring high quality to the
semi-automatic construction of the domain model, and thereafter use the methods
found to build an adaptive hypertext system. Remember from the introductory part
that with high quality we mean that the system should capture the domain
33

knowledge well with respect to concepts and relations, so that the domain model is
in accordance with the author’s view of the domain.

We hypothesise that the combination of Information Retrieval (IR) techniques and
an analysis of document properties and hypertext structure, yields a means to both
find and use Heuristical rules for the identification of concepts and relations, and to
ensure a resulting domain model of high quality for an adaptive hypertext system.

5.1.2 Some possible approaches

How can the content of the documents be abstracted? One way is to require that
each document should be structured in a specific manner and tagged with respect
to content. Knowing exactly how the documents look like, the adaptive hypertext
system can be programmed to perform powerful adaptations. This is clearly a very
inflexible approach in that it places a heavy load on the author in the tagging phase.
It also conflicts goals of using existing HTML documents as easily as possible, as
exemplified in the system KN-AHS, which compose documents based on
knowledge about with which hotwords the user is familiar [Kobsa+94]. The
hotwords are designed to fit the system in advance of interaction. Systems that

Figure 5–1: The concept of high quality explained in terms of the actors.

Table 5–1: Main hypothesis

The combination of IR-techniques and an analysis of document
properties and hypertext structure with respect to content, yields
Heuristics that secure the production of an AHS domain model of
high quality.
34

manage personalised views of information spaces extend the notion of classical IR-
hypermedia systems by not only locating but also organising the information in a
way the user wants [Brusilovsky01]. However, running traditional IR-analysis on
the documents with vectors representing each section in a document, the adaptive
information could be presented by comparing the vector-representation of the
document requested for with the user’s knowledge represented in a similar vector
space. Marinilli et. al propose a case based approach to information filtering that
presents HTML documents according to the interests of the users. A filtering
component selects relevant documents for each user by means of a vector model.
After exposing a text document to stoplist, weighting and separation of words, the
resulting array of values (one value for each category) is mapped into stereotypes
[Marinilli+99]. Before bringing our approach to light, we refresh on HTML.

5.1.3 What is HTML?

According to the specifications of the World Wide Web Consortium (W3C),
HTML (Hyper Text Markup Language) “is the lingua franca for publishing text on
the web” [w3]. It is essentially a subset of SGML, but even though a much less
complexity in HTML, the language usually offers authors enough flexibility. An
HTML-document may consist of elements like text, tables, graphics, sound etc.,
and these elements are marked up by means of tags. As HTML is fairly easy to
learn, anyone can make, structure and format their own Internet pages. The
documents may be created either by writing tags and text directly into an HTML-
editor or by converting an existing formatted text-document to an HTML-

document. In the latter case, a standard text-editor1 uses advanced techniques like

style sheets and the like to extend the expressive power of the HTML-language2

and make an HTML-document look as similar as possible compared to the original
document. A complicating characteristic with such automatic conversion, is that
the source of the resulting HTML-document is very difficult to read and edit for a
person due to much redundant coding from the automatic process. Programs to
“clean up” such auto-generated code, or bad programmed documents, exist,

however3.

An HTML document consists of a header section with meta information and a
body section with the text and graphics presented on the screen. The tags mark up
the text, so if the author of a document wishes to make a piece of it appear in bold,
 and tags mark where the bold face-formatting should start and end,
respectively. The tags are present in the HTML-file, but only the interpreted result
is displayed on the screen by the browser. More advanced features like XML,
stylists, Javascript, Java applets and the like can be embedded as necessary to
further format and add functionality to the documents.

1. Text editors range from simple to more complex ones, e.g. Notepad, Microsoft Word,
Lotus AmiPro, FrameMaker, etc.

2. DTDs and style sheets redefines the standard formatting provided by the tags.
3. The program “Tidy” for Unix is an example of a program that fixes incorrectly tagged

documents.
35

5.1.4 Using tags in the conceptualization process

Brusilovsky emphasises that adaptivity requires knowledge about links and
documents, where the documents must be indexed according to the user's goals,
knowledge and background [Brusilovsky01]. The process of conceptualization
tries to abstract the information of a domain and associate descriptive concepts
with this information. For an AHS there is a need to separate the information
entities and understand their relative importance as knowledge sources for the user.
We therefore question how to identify and conceptualise each chunk of knowledge
before constructing the domain model.

There are two interesting observations concerning the nature of online material.
First, with the ability to link different documents the author can make a more
natural decomposition of large documents into smaller ones, so that the size of an
HTML document is on the average relatively small, often limited to knowledge
sources dealing with a specific subject. Secondly, writing and formatting a
document normally involves emphasising important words, structuring the text
through paragraphs, setting up links to related documents, summarising
information in tables and bulleted lists, and perhaps of most importance: using
descriptive headings. The purpose of formatting is to improve readability and the
user’s understanding of the content, and from this we can advantage when aiming
for an AHS. Assuming that most concepts, conceptual structures and domain
specific terminology appear in the documents of the domain, it should be
promising to acquire knowledge from the corresponding nodes [Kietz+00]. Figure
5–2 illustrates how an HTML document is divided into different elements, or
sections, in terms of content and presentational form.

In adaptive hypermedia systems, concepts are used both in the domain model and
throughout user interaction, and are essential to the system since they are the clues
that point to the specific knowledge sources. Davis et. al argues that it is important
that a knowledge representation acts well as a medium of communication and
expression [Davis+93]. The conceptualization can be fulfilled by picking out the

Figure 5–2: Example of HTML documents as they appear for the user on screen,
illustrating how the author might organise content into different elements.
36

most promising keyword terms from the elements, and concepts can be labelled in
a way understandable by a person by using the keywords abstracted. This method
therefore agrees with the demand to simplify the manual evaluation and adjustment
from a domain expert and facilitates the author’s interaction with the domain
model. Moreover, users can better control the content of their user models by
simply looking at the concept label and sort out which concepts seem familiar or
not. In their simplest form, concepts would consist of only one keyword term. By
permitting several concurrent terms, or phrases like “Saying the right thing at the
right time” when labelling the conceptual states, the problem of how to compare
different concepts arises. On the other hand, if several independent terms are
allowed for the concept, similarity measures can be applied. Finally, notice the
possible ambiguity in that a term can have different meanings in distinct contexts.

De Bra et. al distinguish three kinds of concepts. Atomic concepts are the smallest
information units, pages are composed of atomic concepts, and abstract concepts
represent larger units of information [De Bra+99]. In a similar fashion, we assume
that regarding content, documents are likely to have a context superior to its
sections, and likewise, some documents might be superior to other documents. We
therefore find it convenient to separate document concepts from element concepts
in the process of building a domain model.

5.1.5 Importance of the elements

Since the formatting tags are included along with the content in the HTML-files,
the system can easily search for concepts in elements regarded important. A tag is
embraced in brackets and has a name, but not all tags need to be closed, that is, no
end-tag is needed to mark the end of the element in order for the browser to
interpret the page correctly. Most tags have some optional attributes that can be
assigned values specifying the purpose or layout of elements. Table 5–2 presents
the most commonly used tags.

Even though different tags are designed for different purposes in HTML, the
author is free to use the tags for other purposes, like layout. There is no guarantee

that tags are used coherently among different domains or even within a domain.1

Particularly, in their survey of the history of hypertext, Ashman et. al call attention
to studies which have shown that the set of links varies a lot from author to author
[Ashman+99].

The diversity of the use of tags complicates the process of selecting which
elements are the best indicators of concepts and choosing the correct level of
abstraction. In order to extract the meaning from a document based on its elements,
we need to find out and analyse how the average author has used tags to mark up
documents, or in other words, identify what are the most important tags in terms of
conceptualization for a randomly picked document. As expected, this task is
complicated. Therefore, and due to the limited scope of this thesis, the following

1. XML (eXtended Markup Language) is designed with coherence in mind, but since the
vast majority of the documents on the web today is HTML-documents, we have chosen
to stick to HTML in this research.
37

discussion is based on a small set of empirical data focusing on the ideal use of
tags, the different roles the elements play and potential traps when it comes to
extracting concepts based on the elements.

Meta elements contain information about a document, hidden for the visitor but
usable for spiders helping search engines to index Web documents. The three most
important meta tags are the description meta tag, the keyword meta tag and the title
meta tag. The last one is most commonly used and should identify the content of
the document in a fairly wide context. Since the title is a property of the document
and not part of the text presented to the user, it can and often is used to label the
browser window. Its value is also default as descriptor for both browser history and

Table 5–2 The most commonly used HTML-tags

Tag
name

Short description Notes End

<HTML> Language used is HTML The document is embraced by this tag No

<HEAD> Header information Not visible to the user, only to the browser Yes

<TITLE> A descriptive title of the document Often used to label the browser window Yes

<META> Main purpose is to guide search
engines during indexing

The attributes are identified by search engines No

<BODY> Indicates the start of the visible
portion of a page

Everything contained within the document body is
visible to the user

No

<H1> Heading level 1 Largest font size of the six headings Yes

<H6> Heading level 6 Smallest font size of the six headings Yes

 Unordered list of LI-elements Can be nested Yes

 Ordered list of LI-elements Can be nested Yes

 List element Each LI forces a new line No

, <I> Emphasise and Italic, respectively The tag usually appears as italic Yes

, <U> Bold and Underline, respectively <U> should not be confused with links Yes

 Provides font formatting Additional attributes specify size/color Yes

<P> Denotes a paragraph Inserts an empty space before and after No

<TABLE> Has rows <TR> and columns <TD> A table cell can hold any element including another
table

Yes

 Inserts an image in the document. A
description is shown in case the
browser has turned images off

<IMG SRC=”name” ALT=”descriptive text goes
here”>

No

<!-- --> Comment Not interpreted by the browser Yes

<SCRIPT> Embeds a script of a specified type Scripts can be stored in external files Yes

<A HREF>

Link, i.e. hyper reference links to the document with the url
specified
 creates a target location
somewhere within a document that can be linked to
 links to a specific
location inside a document

Yes

 Line break Inserts a carriage return. No spacing No

<DIV> Element used for special purposes Often contains a class definition Yes
38

bookmarked favourite sites. Short and descriptive titles should be used, but there is
no guarantee the same title is not used throughout the domain. In general, a
drawback in the adaptive setting yields that meta information in the worst case
could be equal for every document in a domain. Even worse, this often happens to
be true. When creating a bunch of documents an efficient technique is to make a
template document with only the structure or form, this acting as the basis for
constructing the domain documents in order to ensure the same layout and local
structure. Meta information is not visible to the user and the author might therefore
more easily forget to change it according to the content of each document.

Headings serve the purpose of describing the content of the sections to follow.
Hence headings alone are powerful sources of identifying keywords connected to
the distinct elements and the document as a whole. Headings are ordered according
to levels ranging from <H1> to <H6>, and by default the font size of <H1> is
larger than <H2>, which is larger than <H3> etc., so a natural assumption to make
is that the structure of the document agrees with the intended tree-like ordering
provided by the HTML specification.

Tags like , <I>, , <U>, <CITE> and are designed to
emphasise text. They often occur inside other elements, and hence serve two
purposes: both to outline important keywords or even whole sentences, and to
make the text more structured and readable. Even though promising, note that there
is no guarantee that emphasizers are used properly or hold important words
representative for their parent elements.

Among indicators of intended groupings are ordered and unordered lists,
designated with and respectively. Lists consist of several
elements. There is a possibility of nesting lists, that is a element may actually
be replaced by a new list. Another commonly used element for grouping
information into paragraphs, is the <P> tag, popular in most documents since it is
the easiest way to embody perceived open spaces between textual elements. Other
groupings of text are provided by block quotes and tables. The latter is both an
interesting and complex matter. <TABLE> can be used to group other HTML
elements, summarise information, or even for layout purposes. Many efforts have
tried to extract or categorise information into e.g. databases based on analysing
table content like in [Cohen00]. It is difficult for the system to find out what
purpose a table serves, and hence an analysis of the information exhibited is not
too promising.

<A HREF> is the tag indicating a hyper reference, or link, to (somewhere in) a
document. Links provide a means to connect related documents, allowing the user
to quickly manoeuvre the hyperspace from one place to another. The power of a
link is that it can point to anything. Without links, the flexibility of the web
disappears. Many styleguides recommend that the text embraced by the link tag
should be descriptive of what it is linking to [Berners-Lee95], that is qualified with
a clue like “a step-by-step tutorial” rather than “click here”, to allow some people
to skip it. What does a link mean to different people? If used properly, even people
jumping in on a page from outside the present context would be able to decide
whether to explore the link or not. Among common problems are documents
39

overcrowded with links, and broken links, i.e. links pointing to another destination
than intended or to a non-existing destination.

Finally, images should not be forgotten. The phrase “an image says more than a
thousand words” is one reason why the web is filled with illustrations. Another
reason is that images provide interactive experiences for the user, either as static
images or as clickable image maps. The tag has an optional ALT attribute
that should hold a short textual description of the image. Until recently, this
property was needed and widely used since many users instructed their browsers to
not show images due to low transfer rates, and authors therefore embedded
descriptions in order to allow the users to consider explicitly requesting for the
image. Despite increased transfer rates, the ALT-attribute is still widely used today
since most browsers show its description whenever the mouse passes over the
image. Moreover, images are useful to spice up the content, or for summarising
important and difficult subjects in a document. The most commonly used graphical
format is jpg- and gif-images.

From the perspective of a the browser software, its task is to interpret the tags in
the HTML document in order to present a formatted page to the user. It is our
belief that the adaptive hypertext system can make use of the very same tags in
order to choose the elements that are important to conceptualise, as illustrated in
Figure 5–3. The task to follow concerns how to extract as much information as
possible in order to lay the grounds for ensuring quality to the selection of final
concepts.

Figure 5–3: Some tags indicate which elements are important to conceptualise, while others
assist in the process of conceptualization.
40

5.1.6 Using IR-techniques within important
elements

After identifying important features of the elements above, we need methods to
further analyse them in order to extract possible concepts. In the field of
Information Retrieval (IR), the main goal deals with automated classification and
retrieval of unstructured documents [Frakes+92]. IR-techniques such as lexical
analysis, stoplists and stemming provide a way to identify the words of each
document with high discrimination values, thus forming the basis of building an

index. When a query1 is being executed the most relevant document(s) matching
the query can be retrieved.

An IR system seems useless as an adaptive hypertext system since it provides little
or no understanding of document quality [Berners-Lee96]. The basic IR-
techniques, however, may assist in the adaptive hypertext system, since what is
needed in the conceptualization phase is a proposal of important keywords. That is
the concept candidates are partly a result of a statistical IR-analysis, whereas the
selection of final concepts is made by a more intelligently reasoning upon the
candidates.

Lexical analysis is the process of transforming a stream of characters into a list of
lower case words or tokens, by removing any character that is not a letter nor a
digit. This implies that an HTML-document passing through lexical analysis
would loose its brackets around the tags, as the brackets are non-letter characters.
Clearly the adaptive system would fail if this important information were lost.
Performing the IR-analysis on the text embraced with interesting elements only
(not the entire HTML-document) solves this problem.

Frequent occurring words2 from the spoken language have no indexing value.
The use of a stoplist may reduce the number of words since stopwords typically
account for 20-30 percent of the tokens in an average document. In the stoplist
process, every word from the text is checked against the stoplist and eliminated if
found there, thus the survivors are more likely to be of importance.

Stemming is the automatic fusion of term variants, so that after stemming the
terms “concerned”, “concerning” and “concerns” all get conflated into the stem
“concern”. Although stemming may reduce the size of an index by as much as
50%, some information about the terms going through stemming is clearly lost.
The Porter-algorithm is a well-known and fairly small implementation of
stemming [Frakes+92].

For instance, we performed a test (using the basic IR-techniques) on an element
from a randomly picked HTML-document. The results showed that after being

1. If the user wants to find information on the Internet about a subject, he/she needs to
formulate a (boolean) query consisting of key terms.

2. Van Rijsbergen have developed a stoplist of 250 words that is widely used in IR-
analysis [Frakes+92]. Common words occurring in many documents may be for
example “time”, “any”, “all”, “into”, “very”, “asking”, “where” etc.
41

exposed to lexical analysis and stoplist only 133 out of 290 terms remained (i.e.
46% of the total number). Removing duplicates before stemming lead to a
resulting 96 terms (i.e. 33% of the total number), while removing duplicates after
stemming reduced the text to 87 terms (i.e. 30% of the total number). Even though
about 70% compression was obtained after IR-analysis, the test indicated that these
procedures alone were not enough to fully extract a few concepts describing the
element. The problem is that one paragraph alone is likely to produce far to many
potential competing concepts. A more exhaustive approach is needed.

5.1.7 Domain specific list

A concept of an element could be represented by a vector of all the terms in the
element accounting for all the terms in the domain. The conceptual space would
then consist of many different vectors so that similar elements would have quite
similar vector representations. The alternative approach implemented in this
research uses human knowledge to ensure quality with respect to the
conceptualization. If the author of a domain wants to prepare a collection of
documents for the adaptive system, one might require that the first thing to do is
constructing a domain-specific list with keywords regarded as being indicators of

concepts or important paragraphs of text. Using such a domain specific list1 or
DSL actively when analysing each document, would help the system to identify
possible concepts and important elements and later help in building relations
among the concepts proposed. As an example, say that the term “star” is listed in

the domain specific list2 and also found in an element. Then the system could
select the word “star” as one strong concept candidate for that element or for the
document as a whole. Note that constructing a DSL needs only to be done once for
each domain.

The performance of the adaptive hypertext system is related to both the quality and
complexity of the DSL, since the idea is for the system to actively be using the list
in the process of conceptualising the documents. Obviously the content and size of
the DSL would influence the selection of concepts. A thoroughly considered list
would therefore increase performance, and, from the view of the end user, make
the system act more intelligently. Furthermore, using not only one, but several
different lists should add flexibility to the system. Remember the DSL is not only
of value before extracting information, but also when monitoring the user and
adapting documents on the fly. The influence of several lists is best illustrated in an
educational setting where the level of knowledge may vary significant among
students due to a variation in individual skills and related knowledge obtained from
prior courses. If the students were allowed to modify their own DSL and the
system could use lists from related courses, the goal of a presentation tailored to

each user seems much closer 3.

1. The domain specific list can be thought of as an “anti-stop list”, that is a list acting
directly opposite to the IR stoplist method.

2. Allowing for more than one DSL yields a flexible facility to the adaptive hypertext
system

3. This is necessary in the case of documents being analysed on the fly. In our approach,
we intend to perform the analysis in advance of the user interaction.
42

Making models explicit to the system adds both flexibility and system performance
with respect to intelligence. The system KN-AHS does not integrate the user-
modelling component BGP-MS into the application. This leads to adaptivity in the
following senses: many types of information about the user can be represented
simultaneously, the user-modelling component can receive and answer questions,
and accumulation of knowledge takes place more naturally [Kobsa+94].
Embedding the domain specific list in the domain model should help during the
analysis of documents. Using the DSL therefore yields a simple technique that
strengthens the strategy of conceptualising a document based on the contents of its
elements.

5.1.8 Other ways to extract information

Term frequencies (TF) can be used in order to extract concepts [Kietz+00], based
on the assumption that terms that occur often, with the exception of stopwords, are
of importance. After counting the TF, the resulting information can be sorted so
that the most frequent occurring term (TFmax), or all terms with a higher TF than a
given threshold (TFtreshold) can be listed.

So far we have found that a domain consists of different documents linked
together, each of which has different elements, and we know some simple
techniques that can be used to gain statistical information of the text. Keeping this
in mind, the work continues on the development of a strategy to guide the
conceptualization.

5.2 A domain model in the horizon

It seems convenient to represent the domain knowledge in terms of concepts and
relations among the concepts. Before we explore how to build a domain model in
the next section, we formalise the notation of the information as provided by the
techniques introduced in the previous, and develop Heuristical rules in order to
select the most promising concepts and relations. The rules are the backbone of the
construction of the model which in turn is quite critical concerning the system’s
ability to perform adaptations. The following discussion is therefore essential to
our work.

5.2.1 The sets of candidate concepts

From the discussion in section 5.1.5 “Importance of the elements”, page 37, we see
that those elements classified as “important” serve various purposes for both the
user and the author. Due to this variety, the system needs to take action according
to rules in order to extract concepts. These rules should account for as many
aspects as possible, both the global ones concerning the document as a whole, as
well as the local ones, like document subsections. Keeping the rules in a rule base
yields both power and flexibility to the process of analysing HTML-documents.
43

New rules may be easily added to the base without affecting other modules of the
system. An appealing strategy is to parse each document looking for important
elements, extract the information within, and finally, in the search for concepts,
analyse it according to rules.

Each method m used on an element i, produces a set Sim consisting of n candidate
concept terms cj when run on an important element, i.e. Sim = {c1, c2, ..., cn}.
Therefore we refer to the techniques as information sources from now on. A brief
summary of the functionality of each information source is listed in Table 5–3.

Each method produces different sets of terms that all can be more or less suitable
as a concept describing the element. In order to visualise, regard the following
rather simple element written in HTML:

• <P>Our solar system is only one of millions of
other solar systems. It consists of nine
planets, of which the earth is the only one with
developed life </P>

Assume a domain specific list (DSL) holding the three terms “Pluto”, “Mars” and
“Earth” and a term frequency threshold set to two terms. The list below illustrates
the different sets of terms originating from the different information sources.
Notice that the terms from the element are stemmed, as are those in the DSL.
Finally, since the element is surrounded by a paragraph-tag, we label the sets with a
leading “P”. The meaning of the first item in the list is that the set S of terms from
element P when exposed to Lexical Analysis, are “solar”, “system” etc.

• SP LA = {solar, system, million, consist, nine, planet, tellu, earth, develop, life}
• SP DSL = {earth}
• SP TF = {solar, system}
• SP Emp = {planet}

Note that with this notation, it is easy to picture different sets and how their
members influence each other.

Table 5–3: Functionalities of the information sources

Method /
Abbreviation

Information source Functionality

LA Lexical analysis Converts the stream of characters in an element to
a list of terms, where stopwords are removed

DSL Domain specific list Identifies terms from the element that match
terms in a domain specific list

TF Term frequency Counts number of occurrences for each term in an
element

Emp Emphasizer
identification

Lists terms in emphasised elements that occur
within an element
44

5.2.2 Values separate the candidates

For an element, the task for the adaptive system is to choose the best concept from
the set of all information sources, that is the concept must be chosen from Ci = ∑m
∪ Sim Notice that the set notion is also true for the whole document, i.e CDOC is a
valid set just as CTABLE, CIMG and CP are valid sets. Apart from image and link
elements, all elements that go through lexical analysis (and stopword removal,
both denoted by LA) have a potentially large set Si LA. The more the number of
competing terms, the more difficult the process of ensuring quality to the final
selection. Inspired by Sharma, who outlines the power of a strong Heuristics model
for developing a user model in the absence of well known methods [Sharma01],
we apply a straightforward approach to the conceptualization process of the
document and/or each element by adding values to each candidate from Celement
based on Heuristical rules. The most important terms can be distinguished from the
less important ones simply by judging the final numeric values summed up from
all Heuristics, so after all Heuristics have done their job, a set of candidates ci
ordered by value is the result, where the value of c1 ≥ c2 ≥ c3 etc. To exemplify, say
the system produced the candidates “sun”, “rain”, “day” and “wind” for an
element, where the candidates had values of 14, 12, 9 and 3, respectively. Then the
matter of selecting the concept is simply finding the head of the ordered list, which
means that “sun” becomes the concept. The tail of the original list hosts all the
candidates that were not selected.

Let us stress the definition of the word value. A value is associated with each
Heuristic. The terms take on these values as the Heuristics fire, so after the process
of analysing an element, all the element terms have various scores. In other words,
the score of a term is the total of all values added to the term. As an example, say
that the following values are associated with three of the Heuristics:

• HeuristicA: positive value of 3
• HeuristicB: positive value of 8
• HeuristicC: negative value of -4

Table 5–4 illustrates the difference between the values of the Heuristics and the
total score. Note that the values are fixed, and are used to add up the score of a
term. From now on, we refer to the present score of a term as its present value.

Table 5–4: The values as assigned by the Heuristics and the total scores held by the terms

Terms HeuristicA HeuristicB HeuristicC
Total
score

agent Yes No No 3

user No Yes Yes 4

model Yes Yes No 11
45

The following discussion on Heuristics debates how to choose the correct level of
abstraction and explores how to guide the process of adding appropriate values to
the candidate concepts.

5.2.3 Their fate is in the hands of Heuristics

Three groups of Heuristics were identified. The Heuristics for important elements
are listed in Table 5–5 followed by those that focus on aspects for the document as
a whole in Table 5–7. An interesting discussion concerning the roles of the
elements in total leads to the Heuristics described in Table 5–8.

Consider a fictional piece of text explaining user models with a section debating
user model acquisition. Within this text the formatted string (written in HTML)
Explicit models gather information by prompting the
user contains the emphasised word “explicit”. The author would prefer the term
“acquisition” as the proposed concept, however, so the system needs to account for
more than the “emphasizer” Heuristic. Furthermore, when creating the DSL, the
author might browse quickly through the pages looking for keywords from
headings and emphasizers as a help to create the domain specific list. Higher
values should therefore be added to concepts suggested by Si DSL than those in
other sets, as stated in the first group of Heuristics below.

Interestingly, Si TF might be quite similar for many documents, if the frequently
occurring terms of one document also has a frequent appearance in others. In order
to reduce this problem, terms that occur often in many documents could be
punished by using a collection frequency and normalising the set [Kietz+00].
Additionally, through the use of stemming the figures are further incremented
since terms with the same stem count twice.

Notice the complementary nature of the sets as illustrated in Table 5–6. When their
elements coincide, the respective values summed up thus far are incremented or
decremented according to Heuristics. The total value, or score of a concept c in the
set Celement is therefore the sum of the values calculated from one or more

Table 5–5: Some Heuristics used for important elements

HC-1 Terms stated explicitly by some domain expert are very
likely to be among the most useful concepts, a fact that suggests
assigning high values to members of Si DSL

HC-2 The more a term occurs, the more important it is. The set Si

TF results from counting term frequencies in Si LA. Assigning each c
with values relative to these frequencies therefore seems promising.

HC-3 Members from Si Emp can provide quality for the system in
the selection process. Even though the author decides selectively
which words to emphasise, emphasizers are not always used
properly, and therefore the value should not be too dominant.
46

Heuristical rules, so e.g. if Si LA = {c1, c2, c3, c4, c5, c6, c7, c8}, the score of c5 is
the sum of values defined by Heuristics HC-1 and HC-3.

The second group of Heuristics focus on aspects for the document as a whole.
Since the document can be considered as an element containing children elements
(subordinate elements), the information sources (DSL, TF, LA) are valuable and
the Heuristics from Table 5–5 can be applied. In addition, the ones listed in Table
5–7 are important contributors to the quality of the Conceptualization of a
document.

Despite the potential quality provided through meta information and the title
element, these sources could in the worst case be equal for every document in a
domain, and often is, as noted in the discussion in section 5.1.5 “Importance of the
elements”, page 37, thus misleading the system to choose the same concept for
every document. The solution is straightforward and involves comparing meta
information in every document with that information found this far. If two
documents have the same meta information, then Heuristic HC-4 is cancelled for
these documents.

Two very interesting features are implicitly contained in Heuristic HC-5. First, if a
candidate concept recurs in several different elements within a document, it is
likely to be an important keyword for the entire text. Due to the different roles of
the elements, their respective candidates should not count equally in the process of
adding up values. In particular, headings at the highest level (normally <H1>)
should have higher priority than lower level headings, tables and lists. The second
feature e.g. reveals the dual role of external hyper references, i.e. links to other

Table 5–6: The complementary role of the Heuristics

Set name Set content Associated Heuristic

Si DSL {c2, c5} HC-1

Si TF {c1, c4, c6, c7, c8} HC-2

Si Emp {c3, c5, c6} HC-3

Table 5–7: Some Heuristics used for the entire document

HC-4 Meta information and the title element ensure quality to the
selection since their content most likely are considered thoroughly
from the author’s side. Relatively high values can therefore be
applied in such cases.

HC-5 A value that reflects the characteristics of the element in
which a term lives, should be added to the score. The type of
element where a candidate concept occurs matters in the selection
process, that is some elements are more important than others.

HC-6 If a document d is pointed to from another document in the
domain, the description of the link element in d should be assigned
a very high value, based on the assumption that hyper references are
of value for the conceptualization of future documents.
47

documents. As noted in section 5.1.5, the text embraced by the link tag <A HREF>
is often (or at least should be) qualified with a clue indicating what it is pointing to,
rather than the often used printing block “click here”. Hence, one of the terms in
the clue is very likely to be a concept (or at least a very strong candidate concept)
of the document pointed to by the link. The same term is simultaneously

destructive as a candidate for the document at hand1. In other words, candidates
from hyper reference elements should not be accumulated to the set Cdoc when
searching for a document concept, but should be saved for future use, that is only
candidates from hyper references pointing to the present document should be
accumulated to Cdoc. Heuristic HC-6 therefore has the implicit assumption that all
links in the domain are known in advance of the conceptualization of documents,
are represented somewhere (e.g. a matrix or a file) and are used throughout the
analysis.

As an example of how Heuristic HC-6 works, assume that the hyper reference user appears in “file1.html”. Then the term user
is very likely to be the concept of the document “file3.html”, but it should not be
the concept of “file1.html”. A high value is added to the score of occurrences of
user in “file3.html”, and a low value to occurrences of user in “file1.html”.

It is interesting to question which rules should fire, that is, are all sets of equal
relevance, or should some be omitted under certain conditions? Do the different
element types influence the final outcome? Obviously there is a possible conflict
between the conceptualization of a document and its elements. By treating the
document as one big element enclosed by the <HTML> and </HTML> tags, we
see that all sets Celement from a document is contained in Cdoc but the reverse does
not hold, as illustrated in Figure 5–4. The candidate concepts appear as black dots.

Why is this observation so important? Remember the purpose of the concepts -
they should act as descriptors of the content of each particular knowledge source in
the domain, providing a basis for building the domain model. Furthermore the

1. Two documents should not have the same concept according to the requirements of the
domain model, but as will be explained in Heuristic HC-7, different sections of a
document might very well have the same concept due to their complementary roles.

Figure 5–4: Candidate concepts of a document belong to different sets
48

division into document concepts and element concepts was based on the need to
acquire knowledge sources at different levels in the adaptation phase. In other
words, element concepts should differ from document concepts in order to prevent
overlapping information, thus ensuring a better domain model. This conflict is not
unique. What happens if the same conceptual description is found for elements of
distinct types? Heuristics that solve such problems are listed in Table 5–8 below.
Note that most of these Heuristics don’t hand out values as did the previous ones
(except Heuristic HC-8).

Brusilovsky points out that an adaptive system can choose different types of media
with which to present information to the user, according to what is most relevant at
the given node (i.e. document) [Brusilovsky01]. Accounting for the fact that
different elements act as complementary sources of information for the user
provides a means for the system to add variety to the presentation based on context
and user preferences, so Heuristic HC-7 suggests that similar conceptual
descriptions should be accepted only when the element types differ. Note that this
applies for whole documents as well (remember the document-as-HTML-element
view), so two documents should not be assigned the same concept. When it comes
to the future adaptive generations, the system would be better off if it for elements
that equal in terms of both type and proposed conceptual description, tries with
another concept. Similarly, candidates that equal the document concept found
should not be considered when searching for concepts in the important elements,
since they provide no new information to the system. Heuristic HC-8 therefore
implies that the search for document concepts should precede that of element
concepts, a statement consistent with its fellow Heuristic HC-11.

Heuristic HC-9 claims that the level of abstraction may vary. Moreover, headings
should not be regarded as stand-alone elements, as they indicate the start of a new
section in the document and are likely to reflect its content well. The scope of a

Table 5–8: Some Heuristics used for the ensemble of elements in a document

HC-7 In case the same concept is proposed for two distinct
element types, the system can perform more powerful adaptations
based on user preferences. Presentational form matters in the
adaptive phase, so information on the element types should be
preserved.

HC-8 Candidates that equal the document concept found should
not be considered when searching for concepts in important
elements. In order to prevent their influence, such candidates could
be assigned large negative values.

HC-9 The level of abstraction can vary for different documents.
Headings indicate the start of new sections and are likely to describe
the content that follows.

HC-10 Lists, images and tables should always be considered as
single units since they provide variation in the document and often
act as complementary sources of information for the surrounding
text.

HC-11 Since some elements might be superfluous, an analysis of
the document structure should precede that of the elements.
49

header includes all elements from below it to the next heading at the same level.
The problem of choosing the correct granularity concerns which information
entities should be regarded as atomic. In the eyes of a natural language expert, the
task is to mine text from each sentence. For the adaptive hypertext system, the
attempt is to represent the knowledge of a domain in terms of a conceptual domain
model: as indicated so far, each document and the different elements are subject to

this conceptualization. Some documents are larger than others1, but if well
structured, e.g. assuming a proper use of headings cf. section 5.1.5, the system
could try to bring the process of conceptualization to a more fine-grained level. In
particular, an examination of which header tags are used should reveal how many
levels of the concept hierarchy a single document covers.

Heuristic HC-10 outlines the importance for images, lists and tables to be
considered as single units. For instance, in order to conceptualise list elements
(or), it is important to understand how they are used in the document.
First, a list can be considered as one entity which implies finding one good
candidate concept is desirable. Secondly, an analysis of the content of each
element in a list is somewhat more complex, but provides a means to identify
relations between global list concepts and sub concepts within the list. Obviously,
if the document only has one element, namely one big list, important information
would get lost if the individual elements were never subject to further
analysis. On the other hand, the resulting document representation could get far too
complex if all list elements in addition to other elements were analysed. The
important and difficult task here is to choose the appropriate level according to the
overall document structure. Similar considerations apply for table elements.
Finally, due to their value for the user and interactivity, images would probably
denote important concepts either for the document or for elements depending of
where they occur. The problem of how to conceptualise an image, can be solved by
looking in the ALT attribute or using the filename of the image.

A summary of the above discussion is exemplified in Figure 5–5. The conceptual
descriptions ki are document concepts (squares) and element concepts (circles)
representing the document and elements of the illustrated types - images, tables,
text and lists. Agreeing with Heuristic HC-7, we see that k2 represents both an
image and plain text. The same apply between documents: The system might very

1. An easy measure for size is file size (remember images are imported by reference in
HTML), another more demanding measure is by counting words.
50

well propose the same conceptual description k4 for the image element of one
document as for the table element of another.

5.2.4 Ensuring flexibility

In order to control the impact from the combination of the different Heuristics, the
respective values can be kept in a file and hence adjusted by the domain expert,
introducing a means to experiment empirically on the relative importance of the
rules. Making a value zero means preventing its rule from influencing the total
score of a term. An high negative value would mean that rule to block a candidate
from consideration, which would be desirable in cases like Heuristics HC-5 and
HC-8. Using ideas from the theory of neural networks (NN), in which values
(called weights in NN terminology) are adjusted over time by the system to change
performance and knowledge, the adaptive hypertext system could even find means
for adjusting the values itself e.g. by tracking the domain expert’s rejection of
concepts.

Due to the possibly erroneous outcome of the entire conceptualization process and
the future manual adjustment, it is important that the system retains all the
information found about every element. If a domain expert is dissatisfied with the
suggestions, the system can simply propose new promising concepts selected, and
it could even explain why it chose particular concepts by logging and displaying
the rules fired and their associated values. If the expert keeps on rejecting the
suggestions of the system, it could also, for each specific type of element, track
which information sources the expert seems to prefer, and further identify patterns
in order to modify or develop new heuristical rules, or the system could learn new

Figure 5–5: Conceptual representation of two documents. Note that an element from the first
and one from the second document have been assigned the same concept.
51

rules stated explicitly by the expert. This modification is possible only if the rules
are kept external to the system and if some sort of rule inference engine exists. In
time and throughout interaction, such a system would possibly improve its

performance. Hence the adaptation could be taken further to other levels1, but such
issues are outside the scope of this research.

In the above discussion we tried to choose a document concept and some element
concepts for each document. The selection tried to capture the best among several
candidates by adding values guided by Heuristics. Regardless of the outcome, the
result is a set of concepts describing the content or knowledge of the original
document and its parts. In other words, Kdoc = {k1, k2, ..., km} where the selected
concepts ki ∈ Cdoc ∪ Celement. The next task is to relate the concepts.

5.2.5 Relationship types

In this section there are two aims. First, we want to find a set R of directed
relations r of various types between the concepts in order to extend the knowledge
of the domain model, so Rdomain = ∑i ∪ ri where ri = (ko, kp, relationship_type).
This expression should be read “concept ko is ‘relationship_type’ to/by concept
kp”. Secondly, we want to discuss the possibilities for automatically extracting
these relations, ensuring quality to the process.

Along with all selected concepts, there is a set of candidates L (ordered by value)
that were not selected, i.e. ∀ ki ∃ Lki = {ca, cb, cc...}, where the value of ca ≥ cb ≥
cc etc. Repeating one of the examples used in the previous section, say the system
produced the candidates “sun”, “rain”, “day” and “wind” for an element, where the
candidates had values of 14, 12, 9 and 3, respectively. Then the head of the ordered
list is the concept selected, in other words “sun” becomes the concept of the
knowledge entity. The tail of the original list hosts all the candidates that were not
selected.

For stand-alone individual documents a representation of the knowledge in terms
of conceptual names may seem sufficient. However, for a collection of q
documents we reveal that in Kdomain = Kdoc_1 ∪ Kdoc_2 ∪ ... ∪ Kdoc_q, there
obviously are identical items and relations among the elements, reflected through
similar concepts and implicit conceptual relations. If we make a peek into the
adaptive phase of the interaction, the gap of knowledge in the user model can be
bridged by means of selecting appropriate concepts from the domain model and
present corresponding knowledge sources to the user. Without representing some
sort of connections or relations between the concepts (i.e. the nodes) in the domain
model, it is difficult to embody the process of selection in a thoroughly considered
plan for a sequence of adaptations.

Many types of relations can be identified in order to extend the domain model and
the adaptive performance of the system. In their AHAM system, Wu et. al use the

1. As noted in chapter 4 “Adaptivity”, page 19, a system that takes initiative to, proposes,
selects and executes the adaptation, is called self-adaptive [Malinowski+92].
52

prerequisite, inhibitor and part-of relations [Wu+01], which illustrate conceptual
dependencies in terms of adaptation. Before exploring the characteristics of
conceptual hierarchies and prerequisites, we introduce the discussion searching for
concepts that act as deeper explanations for others. Again we rely on the use of
Heuristics, this time for the identification of the different relationship types.

The system should be able to provide the user with many knowledge sources in
order to broaden the understanding of a subject. For the user, the most conspicuous
relationship type is clickable hyper references (links) provided by <A HREF> in
HTML, as they relate either documents, elements, or a combination. What does
such explicitly stated relations tell the user? Why does the user click on links after
all? Is there a reason for the author to embed hyper references in a document?

Heuristic HR-1 states that identifying links provides a means for the system to find
deeper explanations of a concept. First, links invite the user to move around in
hyperspace. Second, and of importance for deducing this Heuristic, they are
designed by the author and likely to point to information of relevance for the
present context. That is, the author invites the user to find more information by
following the links. Therefore, linked knowledge sources should be represented as
relations in the domain model through connecting the corresponding concepts with
the has_deeper_explanation relationship type, directed from the source to the
destination, so the set Rhas_deeper_explanation = ∑i ∪ ri , ri = (ko, kp,
has_deeper_explanation). Most likely, such relations would occur between
element concepts and document concepts, provided that most links exist within
important sections and point to documents. In particular, a link referring to
somewhere specific in another document (c.f. in
Table 5–2), indicates a conceptual relation between the element concept hosting
the link and the element it refers to.

Let us exemplify HR-1. The relation should be directed from the source of the link
to the destination. Assume that the link learn
more about agents has a source element whose concept is found to be
the term agent, and that the document “agentsmore.html” is conceptualised as
reactiv. Then the relation to be set up is:

• r = (agent, reactiv, has_deeper_explanation).

Instead of duplicating information that already exists elsewhere (outside the
domain), the author may choose to set up external links. Furthermore, as pointed
out by Heuristic HR-2, the external links are of less importance than the internal
ones discussed above, as their destinations are more likely to go beyond the scope

Table 5–9: Heuristics for finding deeper explanations

HR-1 Hyper references between two knowledge sources
somewhere within the domain are also relations of type
has_deeper_explanation between the corresponding concepts.

HR-2 External links with destinations outside of the domain are
slightly different from internal ones, and the corresponding relations
between such knowledge sources should be labelled as external.
53

of the domain. Still, such links should broaden the user’s understanding, hence the
corresponding relations should be labelled external, so that Rexternal = ∑i ∪ ri
where ri = (ko, kp, external). Notice that due to Heuristic HC-6 (page 47), the
adaptive hypertext system has a means to identify both relations and concepts in
one turn, thus strengthening the participatory role of hyper reference elements in
the process of building the domain model. From this we can advantage when
searching for a label for the external concept, namely by conceptualising the <A
HREF> element and let the winner candidate describe the external concept that the
link points to.

So much for explicitly stated references. A document consists of subordinate
elements subject to conceptualization, and their contents are likely to be somehow
related since they appear in the same document. This kind of implicit hierarchy is
not constrained within the limits of single documents, but apply between
documents and possibly even between domains, as illustrated in Figure 5–6.

Heuristics for the conceptual hierarchy guide the search for the sets of parent and
synonym relationship types, denoted Rparent and Rsynonym respectively.

Figure 5–6: The two sections (X.1 and X.2) of the first document are related since they are
both in the context of the more general document subject (X). The document hierarchy shows

how section X.1 is superior to the entire second document, as illustrated by the directed
arrows.

Table 5–10: Heuristics for the conceptual hierarchy

HR-3 All element concepts found within a document are children
of the document concept.

HR-4 There is a parent relation if a member from a set of
candidate concepts equals an already found concept.

HR-5 If two concepts have some joint members from their set of
candidates, the concepts are synonymous.
54

In agreement with the assumption that the concept abstracted from the document
has a context superior to the concepts at the element level, Heuristic HR-3 suggests
relating the document concept and the corresponding element concepts through the
parent relationship type, instead of relating all the element concepts found in a
document with each other. In other words, such elements are implicitly related
through their cohabitation in the same original document, a structure which should
be kept intact in the final domain model. Note that due to concept similarity,
implicit parental relations between different documents or elements can be caught
simply by comparing the conceptual descriptions. For instance, a document
conceptualised to agents with four elements conceptualised to reactiv,
interfac, autonom and dictionary, respectively, leads to the relations

• r = (agent, reactiv, parent)
• r = (agent, interfac, parent)
• r = (agent, autonom, parent)
• r = (agent, dictionary, parent)

Figure 5–7 illustrates the merging of the conceptual representations of the two
documents from Figure 5–6. Note that one element concept of the first document
equals the document concept of the second, namely k3. The parent relations
correctly capture the hierarchy “k6 is secondary to k1” through the relational
sequence r2 to r5. The system must somehow record that k3 now both represents a
document (“Doc2.html”) and an element (“X.2”). Since the document is an
element of type <HTML>, the same method apply for the situation illustrated in
Figure 5–5 (page 51). The implementation specific details are discussed in the next
chapter.

Now let’s turn to the last two Heuristics from the set of hierarchy. As far as the
loser candidate concepts concern, their lives should not be ended despite their loss
in the fight for presidency in the selection process. Given new importance by
Heuristic HR-4, they can finally rejoice and contribute in the process of identifying

Figure 5–7: The relations are of type parent, correctly capturing the concept hierarchy
55

parent relations. If there, for two concepts k1 and k2, exists a candidate c´ in the
loser set Lk1 with the same conceptual description as k2, then the context of k1 is
likely to be superior to that of k2. In other words, if a knowledge source has the
concept softwar and that one of its loser candidates user is the concept of
another knowledge source, then the softwar concept is parent to user. More
formally, if ∃ c´ ∈ Lk1, c´ = k2, then r = (k1, k2, parent). Additionally, if the
reverse also hold at the same time (i.e. ∃ c´ ∈ Lk2, c´ = k1) then the relationship is
not of parenthood, but rather of a more synonymous nature. Heuristic HR-5
therefore claims that two concepts are synonymous if their L sets have some
common denominators. More generally, note that whenever the L sets of two
concepts share candidates so that Lki ∩ Lkj ≠ {∅}, the synonym relation is present
between concepts ki and kj. Finally, due to the values associated with each
candidate, their joint sum provides a means to determine the strength of the
relation. E.g, a threshold might be used so that relations weaker than the threshold
can be turned down, hence controlling the size of the sets Rparent and Rsynonym.
Figure 5–8 illustrates the role of the candidate sets.

An interesting question is whether other relationship types can be found or should
be embedded in the domain model. Obviously, some concepts are more difficult to
understand than others. Does the presentational sequence matter during user
interaction? Are some concepts redundant for some users, but highly necessary for
others? How can we improve and facilitate intelligent reasoning in the adaptation
process? The prerequisite relationship type adds knowledge to the conceptual
hierarchy as it rely on a deeper understanding of the semantics of the concepts. If
concept k1 is a prerequisite for concept k2 it means that k1 should be presented to
the user before k2, whereas if k1 inhibits k2 the latter is no longer desirable in a
presentation once the first is known. Note that it can be possible to infer the
inhibitor relation from a sequence of prerequisites, though not necessarily: if k1 is

Figure 5–8: Heuristic HR-4 is illustrated to the left and HR-5 to the right.
Different values of the candidate concepts are reflected by

 the various sizes of the black dots.
56

a prerequisite for k2 which in turn is a prerequisite for k3, k3 most likely inhibits
k1. The next set of Heuristics therefore focuses on ways to find prerequisites only.

As seen before, only the most valuable terms of a knowledge source were subject
to abstraction. Remember that all candidates are terms but not all terms are
candidates. There are two steps used by Heuristic HR-6 in order to infer
prerequisites, visualised by Figure 5–9 and explained in the following.

Table 5–11: Heuristics for prerequisite relations

HR-6 A term in a knowledge source KS1 which is neither selected
as concept nor in the upper list of candidates, yet a member of the
DSL and chosen as concept for another knowledge source KS2, is
prerequisite to the concept of the first knowledge source KS1.

HR-7 In the presence of a relation between two concepts, together
with an unique, explicitly stated path of documents connecting the
two corresponding knowledge sources, there is a set of prerequisite
relations between the concepts of each document (but the first one),
and the destination of the path.

Figure 5–9: In the knowledge source “goms.html”, “GOMS” is selected as concept. One of the
low-score terms “KLM” also occurs in the domain specific list. Since the “KLM” concept is

already identified as a concept of another knowledge source (namely “klm.html”), the system
concludes it to be important for the user’s understanding of the “GOMS” concept. This is

indicated in the domain model through the prerequisite link.
57

For a randomly picked knowledge source KS, assume ki was selected as the
concept. The first step towards the prerequisites is to check if a term t from KS is
assigned a low score during the conceptualization process. Then the system
believes it to fall short as a key issue. Therefore, due to the Heuristics of the
previous section (page 46 and on) it is unlikely that such a t is explained
thoroughly in the text of KS. Second, if t, despite its low value, turns out to be a
DSL member, it is for certain that it represents important knowledge of the domain
as a whole. Since this knowledge is not debated in KS during user exploration, we
conclude that if a concept k´ from another knowledge source KS´ that equals t
already exists in the domain model, then it is a prerequisite to ki. In other words,
the system can identify prerequisite relations r = (k´, ki, prerequisite) by
comparing the DSL with the “less important” candidates from Lki.

The last Heuristic depends on the results from the previous ones, as it makes use of
one of the discovered implicit relations of any type between two concepts ki and
kj, i.e. r = (ki, kj, relationship_type). A sequence of linked knowledge sources
(stated explicitly by hyper references) make up a path, and therefore the
corresponding concepts constitute an explicitly stated path Pki, kj = [ki, ..., kj],
which is at least true at the document level. If both an r and some P exist for two
concepts ki and kj as exemplified in Figure 5–10 below (k1 to k9), Heuristic HR-7
gives birth to another part of the set of prerequisites Rprerequisite , namely ∑s ∪ rs
where rs = (kn, kj, prerequisite) and i < n < j. The existing relation that led to the
prerequisites, can be deleted since it duplicates the information.

In short, say a parent relation exists between the two concepts debat and
agent, whose knowledge sources are “debating.html” and “agents.html”
respectively. Moreover, when there also is a sequence of links from the two
sources, e.g. from “debating.html” through “software.html” and “iui.html”, to

“agents.html”, then the following prerequisites should result 1:

Figure 5–10: The explicitly stated path Pk1, k9 = [k1, k3, k6, k9] together with the
implicitly discovered relation r1 = (k1, k9, relationship_type) leads Heuristic HR-7 to find two

prerequisite relations, namely r2 = (k3, k9, prerequisite) and r3 = (k6, k9, prerequisite).

1. When the sources “software.html” and “iui.html” are conceptualised as softwar and iui,
respectively.
58

• r = (softwar, agent, prerequisite)
• r = (iui, agent, prerequisite)

5.2.6 Completing the domain model

By now the system has identified a set of concepts Kdomain = ∑i ∪ Kdoc i where
and a set of relations Rdomain = {Rhas_deeper_explanation, Rexternal, Rparent, Rsynonym,
Rprerequisite}. Together, the sets constitute the building blocks of the domain model,
i.e. representing the knowledge of the domain, which is an important basis for the
adaptation engine to perform its tasks producing adaptive presentations for the
user. As previsioned in section 4.5.1 “Building a domain model”, page 30, the
system can not be expected to construct a perfect domain model. Furthermore, as
pointed out by Davis et. al, an imperfect model will lead to incorrect conclusions
[Davis+93] which even more necessitates the need for revision and manual
adjustment from a domain expert (i.e. the author).

When generating hypertextual presentations in the adaptive phase, the appropriate
knowledge sources must be called forth. For efficiency reasons, the elements
extracted from the documents should be stored in a database or in many small files
(one file for each element). First, explicitly storing this information would ensure
quicker customization of documents. Second, when in the adaptive phase the
system must choose ingredients of the document to be generated. Since each
knowledge source is formatted in HTML, scripting languages like PHP, JSP or
ASP can be used to generate documents easily.

The notion of “document concepts” helped in the process of relating the different
knowledge sources. Tempting as it may seem, merely storing the elements found in
individual small files in the final knowledge base yields a potential pitfall. First, it
would be difficult to reconstruct the original documents from the extracted, new
knowledge sources, despite the parent relation, since only the elements classified
as important were subject to conceptualization. In the worst case the original
documents might be poorly tagged, hence leaving the system to omit a lot of
important information in its domain model. Second, it would be difficult for the
system to allow a user to switch between adaptive and original mode.

Retagging the source documents, i.e marking up each element with an unique ID
using the <A NAME> tag, would elegantly solve these problems. Even better,
retagged documents allow for other variants of adaptations including dynamic link
generation to specific areas of interest, adding or removing sections of the original
documents and so forth. Retagging the documents therefore yields an essential
59

supplementary source of information for the system, second to the file/database
representation. The storage issue is shown in Figure 5–11.

5.3 Generating adaptive presentations

With knowledge of the domain model a step is taken towards tailoring documents
to each user. The next concerns user modelling. This section briefly suggests some
overall pragmatic issues in order to place the work from the previous sections in
context of an AHS. In particular, we show how some of the previous made
commitments ensure intelligence a the system’s behaviour.

5.3.1 Structure of the user model

According to Heuristic HC-7, one concept represents many knowledge sources.
This implies that a more complex representation of which concepts are actually
learned should be embedded in the domain model. An appealing solution is to
associate the knowledge state with each concept, so that the degree of user
knowledge on a concept may vary. E.g. the user might have no knowledge at all,
incomplete, complete or deeper knowledge about a concept.

Figure 5–11: To the left, an example of a retagged document holding information about the
elements. For efficiency reasons, the elements are also stored in individual smaller files (to the

right). The representation in total yields flexibility for the adaptation in many senses
60

A user model (UM) is a knowledge representation (KR) that must represent the
knowledge state of each user. In general, a KR play five main roles [Davis+93],
each leading to important properties. First, since the KR is a surrogate for some
real entities, it is a source of error. Second, we need to make some decision on
“what to see” in order to hide some of the potential complexity, and these
ontological commitments constrain the view of the task at hand. Third, the KR is
only part of intelligent reasoning. Different definitions of intelligence contribute
both to the selection of what representation to use and to the form and content of
the inferences that can be legally made. Finally, the last two roles deal with
efficiency and expression issues, which is of less importance for the following
discussion.

At first glance, it seems natural to copy the building blocks from the domain model
(DM) into UM. However, several questions concerning the interaction are at hand.
What should be presented to the user at the first time of interaction? How can
adaptations be made based on empty user models? Do all users have equal
preferences? When is the content learned? In order to answer these questions, we
outline a structure for the user model, keeping the nature of a generic KR in mind.

The first two questions have straightforward solutions. First, the user could browse
the original documents leaving for the system to record the concepts encountered
(note that this is possible due to the retagging introduced in the previous section).
After some initial interaction steps, UM would hold some few concepts (i.e.
nodes), and adaptive behaviour can take place. The second option is for the system
to present the information associated with a start-node, explicitly specified by the
author, or randomly picked. Third, if the user has used the AHS earlier in other,
related domains, as might well happen in educational contexts, there is a chance for
similar concepts from the user model UM´ of the already learned domain and the
concepts to be learned from the present domain DM, thus allowing the system to
initialise the present user model UM. Figure 5–12 illustrates a situation with a

Figure 5–12: The user has already learned a domain UM’, which has some common concepts
with the DM at hand. Note that since the concepts “b” and “f” are not directly related in DM,

they remain so in the user model.
61

previously learned user model UM´ = {b, f, h, i, j, o, s} , where the letters represent
concepts, and the domain model to be learned is DM = {a, b, c, d, e, f, g}. The
system can easily initialise a new user model UM through the operation UM´ ∩
DM, i.e. UM = {b, f}.

The third question points out an additional benefit of embedding user models in
adaptive systems. Not only the knowledge level will vary among users.
Presentational and learning style preferences are also likely to differ, especially for
hypertextual environments. Therefore, user models for an AHS should include
preferred learning style or media types, background, skills of the user etc.
Additionally, drawing assumptions on the level of the user skills, can be useful.
More skilled users should be presented advanced features and immediately
understand the underlying concepts, whereas novices would need a mix of many
different presentations of the same concept. A stereotype approach as discussed in
section 4.3 “Models add power to adaptive systems”, page 24, can be used for this
part.

There are many factors to be considered when analysing user behaviour, e.g. how a
node (concept) is accessed, which information is contained in the node and the
time spent [Brusilovsky96]. Griffin suggests that a time interval is more
appropriate, since people also can get distracted from their task [Griffin97].

To summarize, the user model should at least contain information on concepts, user
characteristics (expert, intermediate, novice), user preferences (illustrations, text,
summaries), state of the concepts (complete, ready-to-learn, incomplete) and the
relations.

5.3.2 Adaptation Model

The system should tailor documents for the user in order to fill the gap of
knowledge. In its simplest form the selection task constitutes the relative
compliment KDM - KUM, that is picking those concepts from the domain model
that has not yet been offered to the user. However, such a solution is not sufficient
for an intelligent behaviour. In which order should the concepts be presented?
When is a concept actually learned? How to best bridge the gap of knowledge for
users with varying skills? Obviously, the system lacks an important component.

According to Wu et. al, the adaptation model states how the system can perform its
adaptation based on a set of adaptation rules. In order to separate the
implementation dependent aspects from the explicit models AM, DM and UM,
some sort of adaptation engine (AE) responsible for performing the adaptation
[Wu+01] and updating the user model [Kules00] is necessary. For our AHS, an AE
provides the composition of documents on the fly by selecting knowledge sources
as pointed to from the concepts in DM, through reasoning on UM, based on rules
from AM. Henceforth, the process of tailoring documents is referred to as how to
select appropriate concepts.

Due to the presence of the conceptual states in UM and the relationship types in
DM, the AE can add intelligence to the process of selecting concepts. Concepts in
62

UM have values indicating at which level they are understood. The relationship
types of DM indicate how the concepts are related. Keep in mind that the goal of
serving the user with information would be twofold: both to plan for a sequence of
concepts and to complete their respective knowledge states. In the following both
parts are intertwined, since the adaptive documents should result based on both
considerations.

In order to fill in more knowledge about a concept and complete its state,
corresponding sections not yet learned could be offered to the user. Following
has_deeper_explanation and parent relations should extend the user’s
understanding of a concept, e.g. when presenting a concept that is a deeper
explanation of another, the status of the latter should be updated from “incomplete”
to “deeper”. For concepts that don’t have any attached deeper explanations, the
deeper level can be obtained when all knowledge sources associated with the
concept is learned. Furthermore, traversing nearby concepts, not only increases the
respective conceptual states. In general, for the task of bridging the gap between
concepts far apart in UM, relations from DM would usefully guide the AE to
construct paths that in sum would network the gaps. The rules from AM would
specify what to do when encountering different relationship types, hence
contributing to the resulting curriculum. In particular, rules in the AE might use the
prerequisite relations to verify whether the prerequisite concepts are satisfied every
time a concept is asked for, and if not, simply present the prerequisites first.
Finally, for expert users external relations would be useful as they most likely
extend the context of the domain (c.f. HR-2, page 53). Likewise, external resources
should not be presented to novices until all concepts are known.

5.3.3 Various forms of adaptations

Hitherto, the task of our AHS was to dynamically generate documents based on
knowledge extracted from the domain. However, the structure of DM and the
preservation of the original (retagged) documents presented in this thesis should
provide for many sorts of adaptations. It is interesting to briefly explore some of
the possible variants. We close this chapter by proposing three options acting as
either stand alone solutions or extensions to our AHS.

One option that makes its actions quite transparent, is for the AHS to follow the
predefined curriculum and content of the original documents, greying out
undesired fragments, insert new sections, and dynamically adding constructed
links (which is referred to as link construction in the literature). Greying out an
undesired fragment would be based on whether the concept representing that
section is learned or not. Sometimes, prerequisite relations would trigger the
system to add more information on a page, e.g. based on incomplete knowledge of

prerequisites1. Link generation can easily be accomplished due to the form of the
marked-up sections from the retagging phase (c.f. Figure 5–11), allowing dynamic
links to refer to specific areas of the original documents as well as the documents
as a whole.

1. The system might simply embed prerequisite concepts whenever their knowledge states
are incomplete.
63

As a second option, based on the element types, we propose that short summaries
can be customised for users asking for a synopsis of the domain or some subject. In
particular, a synopsis for one concept can be made by generating lists out of
knowledge sources that originally were e.g. heading-elements. Likewise, if a
resumé of the domain is to be made, the system can use the same strategies for
concepts it infers to be more important than others, that is for “key concepts”. As
an example, an Heuristic which claims the number of relations to and from a
concept indicate its importance, would be provide a simple way to identify key
concepts. More sophisticated methods are obviously possible, like a more thorough
analysis of DM, searching for the most centralised concepts. Remember from the
discussion in the first section of this chapter where we debated what form the
concepts should take on. Since we stuck to descriptive terms stolen directly from
the knowledge sources instead of building a vector representation, even shorter
summaries can also be provided by listing a range of concepts and present them as
a keywords-list. This additional benefit would require no extra work but a few
rules to select and display the most suitable concepts.

Lastly, if the user has insufficient or incorrect knowledge about a concept, e.g.
revealed through predefined, provisional tests, the system should decrease its state
in UM to the appropriate level, so that previously presented concepts can be
redisplayed. This process possibly includes a reorganisation of the first curriculum
or a more extensive use of illustrations. Furthermore, assume that the system can
visualise DM, i.e. drawing the domain model network on the screen. When
combined with the user model, the knowledge gap could be shown to the user, who
would thus be able to place what was already learned into a larger context
understanding what is around the next corner. Note that the ability for the user to
puzzle the context of the part of DM which is not already walked-through, is again
due to the conceptual descriptions.
64

	5 It’s all about models
	5.1 Extracting information
	5.1.1 Hypothesis of this thesis
	5.1.2 Some possible approaches
	5.1.3 What is HTML?
	5.1.4 Using tags in the conceptualization process
	5.1.5 Importance of the elements
	5.1.6 Using IR-techniques within important elements
	5.1.7 Domain specific list
	5.1.8 Other ways to extract information

	5.2 A domain model in the horizon
	5.2.1 The sets of candidate concepts
	5.2.2 Values separate the candidates
	5.2.3 Their fate is in the hands of Heuristics
	5.2.4 Ensuring flexibility
	5.2.5 Relationship types
	5.2.6 Completing the domain model

	5.3 Generating adaptive presentations
	5.3.1 Structure of the user model
	5.3.2 Adaptation Model
	5.3.3 Various forms of adaptations

